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Abstract: This article is concerned with an investment and consumption problem with stochastic affine interest rate
model, which includes the CIR model and the Vasicek model as special cases. The financial market is composed
of three assets: one cash account, one stock and one zero-coupon bond. Moreover, the price dynamics of the
stock and zero-coupon bond is affected by the dynamics of interest rate. Our objective is to seek an optimal
consumption and portfolio decisions to maximize the expected discounted utility of intermediate consumption and
terminal wealth in the finite horizon. By applying stochastic dynamic programming principle and variable change
techniques, we obtain the explicit expressions of the optimal consumption and portfolio decisions in the power
utility and logarithm utility cases. In order to analyze the impact of the parameters of interest rate on the optimal
consumption and portfolio decisions, we provide a numerical example to illustrate our results.
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1 Introduction

The problems of the optimal investment and op-
timal consumption have attracted more and more at-
tentions of many researchers since the seminal work
of Merton [1, 2]. In Merton’s models, its goal was to
choose the optimal consumption and portfolio deci-
sions to maximize the total expected discounted util-
ity of consumption in the infinite horizon. Stochastic
optimal control theory was first adopted to obtain the
closed-form solutions in the power utility and loga-
rithm utility cases. These works had inspired literal-
ly hundreds of extensions and applications in recent
years. For example, Fleming and Zariphopoulou [3],
Vila and Zariphopoulou [4], and Yao and Zhang [5],
studied the optimal consumption and portfolio deci-
sions with borrowing constraints in different situation-
s. Duffie et al. [6] and Sasha and Zariphopoulou
[7], assumed that the financial market is incomplete
and investigated the optimal consumption and portfo-
lio decisions of the investors. Dumas and Luciano [8],
Shreve and Soner [9], Liu and Loewenstein [10] and
Dai et al. [11], explored the optimal consumption and
portfolio decisions with transaction costs. These mod-
els enriched and extended the works of Merton, but in

those papers interest rate and the volatility of the stock
were almost supposed to be constants or bounded de-
terministic functions of the time.

However, interest rate is not always fixed in our
real life. Recently, some scholars have studied some
portfolio selection problems with stochastic interest
rate and stochastic volatility. For instance, Fleming
and Pang [12] investigated the optimal consumption
and portfolio decisions with stochastic interest rate
and proposed the sub-supersolution method to veri-
fy the existence of the optimal strategy. Munk and
Sørensen [13] characterized the solution of the con-
sumption and investment problem with power utili-
ty preference in a continuous-time dynamically com-
plete market with stochastic changes in the opportu-
nity set. Liu [14] explicitly solved the optimal con-
sumption and portfolio decisions with stochastic mar-
ket parameters in the several special cases when the
asset returns are quadratic and the agent has a con-
stant relative risk aversion coefficient. Fleming and
Hernandez-Hernandez [15] and Chacko and Viceira
[16] studied the optimal investment and optimal con-
sumption strategies with Heston’s stochastic volatility
respectively, but they did not obtain the explicit ex-
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pressions of the optimal portfolios. Noh and Kim [17]
considered an optimal consumption problem with s-
tochastic volatility and stochastic interest rate in an
infinite time horizon, but they only verified the exis-
tence of the optimal trading policies. On the newest
research results one can refer to the works of Chang
et al. [18], Li et al. [19], Chang et al. [20], Chang and
Rong [21], Guan and Liang [23], Chang and Lu [24]
and so on. However, in those papers, Chang et al. [20]
studied the optimal consumption and portfolio deci-
sions under the constant elasticity of variance (CEV)
model, which was the natural extension of geometric
Brownian motion. Chang and Rong [21] investigat-
ed the optimal consumption and portfolio decisions
with stochastic interest rate and stochastic volatility,
in which interest rate was driven by the Cox-Ingersoll-
Ross (CIR) model [22], while the volatility of the s-
tock is governed by the Heston model. Guan and
Liang [23] considered the inflation risk and interest
rate risk in the reinsurance and investment problems,
in which interest rate is suppose be driven by the Va-
sicek model [25]. As matter of fact, the Vasicek mod-
el and the CIR model are special cases of stochastic
affine interest rate model, which is rarely studied in
the portfolio selection problems.

In recent years, some scholars have paid more
and more attentions to the portfolio selection prob-
lems with stochastic affine interest rate model. For
example, Deelstra et al. [26] studied a defined con-
tribution (DC) pension fund in the presence of a min-
imum guarantee, in which stochastic interest rate is
affine. Gao [27] provided a Legendre transform-dual
method to study a DC pension fund with affine inter-
est rate. Chang et al. [28] considered stochastic liabil-
ity process in an affine interest rate environment and
investigated the optimal strategy under HARA utility.
Guan and Liang [29] extended the model of Deelstra
et al. [26] to the environments with affine interest rate
and stochastic volatility. But as far as we know, the
optimal consumption and portfolio decisions with s-
tochastic affine interest rate model have not been re-
ported in the existing literatures.

In this paper we investigate the optimal consump-
tion and portfolio decisions with stochastic affine in-
terest rate model. We assume that interest rate is de-
scribed by an affine interest rate model and can affect
the dynamics of stock price and zero-coupon bond.
The objective of an investor is to maximize the ex-
pected discounted utility of intermediate consumption
and terminal wealth in the finite horizon. Stochastic
optimal control theory is applied to obtain the HJB
equation for the value function, which is non-linear
second-order partial differential equation. It is very
hard to directly produce a closed-form solution of the
HJB equation. In order to obtain the explicit expres-

sions of the optimal investment and consumption s-
trategies, we choose power utility and logarithm u-
tility function as our analysis. In the power utility
case, we repeatedly use variable change technique to
change the HJB equation into (16), which is hard to
solve directly. Inspired by the work of Liu [14], we
can conjecture the structure of the solution of (16) and
fit it successfully. The optimal consumption and port-
folio decisions in the power utility case can be ob-
tained and several special cases are also derived. In
the logarithmic case, we can also use variable change
approach to obtain the optimal consumption and port-
folio decisions. A numerical example is given to il-
lustrate our results. In summary, this article has three
main contributions: (i) the optimal consumption and
portfolio decisions with stochastic affine interest rate
model is studied; (ii) inspired by the work of Li-
u [14], we provide the explicit solution to the equa-
tion (16); (iii) the closed-form solutions of the opti-
mal consumption and portfolio decisions in the power
utility and logarithm utility cases are achieved.

The remainder of this article is organized as fol-
lows. Section 2 describes problem formulation, in-
cluding the financial market, the wealth process and
the optimization criterion. In section 3, the HJB e-
quation is obtained and the closed-form expression-
s of the optimal consumption and portfolio decisions
are derived. Section 4 provides a numerical analysis.
Section 5 concludes this article.

2 Problem Formulation
In this section, we describe the problem formula-

tion, where financial market and wealth process and
optimization criterion are all provided.

We consider a complete and frictionless financial
market which is continuously open over the fixed time
interval [0, T ], where T denotes the fixed finite hori-
zon of investment. The uncertainty involved by the
financial market is described by two standard and in-
dependent Brownian motion Wr(t) and Ws(t), where
Wr(t) and Ws(t) are defined on a complete probabili-
ty space (Ω,Ft, {Ft}0≤t≤T , P ), where P is the real-
world probability and the filtration {Ft}0≤t≤T repre-
sents the information structure generated by Brownian
motion Wr(t) and Ws(t).

2.1 The financial market

Assume that the financial market is composed of
three assets, which can be traded continuously. The
first asset is the risk-free asset (i.e. cash account),
whose price at time t is denoted by S0(t), then S0(t)
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satisfies the following ordinary differential equation:

dS0(t) = r(t)S0(t)dt, S0(0) = 1, (1)

where r(t) is interest rate of cash account.
In this article, suppose that the dynamics of r(t)

is described by the following stochastic differential e-
quation(SDE):

dr(t) = (a− br(t))dt−
√
k1r(t) + k2dWr(t),

r(0) = r0 > 0,
(2)

with the coefficients a, b, r(0), k1 and k2 being posi-
tive constants.

Note that the dynamics recovers, as a special case,
the Vasicek [25] (resp. Cox et al. [22]) dynamics,
when k1 (resp.k2) is equal to zero. Under these dy-
namics, the term structure of interest rate is affine.

The second asset is the stock, whose price is de-
noted by S1(t). The dynamics of S1(t) is governed by
(referring to Deelstra et al. [26] and Gao [27], Chang
et al. [28]):

dS1(t)

S1(t)
= r(t)dt+ σ1(dWs(t) + λ1dt)

+ σ2
√
k1r(t) + k2(dWr(t) + λ2

√
k1r(t) + k2dt),

(3)

with S1(0) = 1 and λ1, λ2 (resp.σ1, σ2) being con-
stants (resp. positive constants).

The third asset is a zero-coupon bond with matu-
rity T , whose price at time T is denoted by S2(t, T ).
Then S2(t, T ) evolves (see Deelstra et al. [26] and
Gao [27], Chang et al. [28])

dS2(t, T )

S2(t, T )
= r(t)dt+ σB(T − t, r(t))× (dWr(t)

+ λ2
√
k1r(t) + k2dt), S2(T, T ) = 1,

(4)

where

σB(T − t, r(t)) = h(T − t)
√
k1r(t) + k2,

h(t) =
2(emt − 1)

m− (b− k1λ2) + emt(m+ b− k1λ2)
,

m =
√

(b− k1λ2)2 + 2k1.

2.2 The wealth process

Assume that the amount of money invested in the
two risky assets (i.e. the stock and the zero-coupon
bond) is denoted by πs(t) and πB(t) respectively.
Letting X(t) represents the wealth process at time
t, then the amount invested in the risk-free asset is

π0(t) = X(t)− πs(t)− πB(t). Suppose that the con-
sumption rate is denoted by C(t). Then the dynamic-
s of X(t) corresponding to π(t) = (πs(t), πB(t)) is
given by

dX(t) = (X(t)r(t) + πsλ2σ2(k1r(t) + k2) + πsλ1σ1

+πBλ2σB
√
k1r(t) + k2 − C(t)

)
dt

+
(
πsσ2

√
k1r(t) + k2 + πBσB

)
dWr(t)

+ πsσ1dWs(t), X(0) = x0 > 0,

(5)

where interest rate r(t) is a stochastic process and is
driven by the SDE (2).

2.3 The optimization criterion

Definition 1 (Admissible strategy) An consumption
and investment strategy (π(t), C(t)) is said to be ad-
missible if the following conditions are satisfied:

(i) (π(t), C(t)) is Ft-progressively measur-

able, and
∫ T

0
∥π(t)∥2 dt <∞,

∫ T

0
C(t)dt < ∞,

a.s. ∀T > 0;

(ii) E
(∫ T

0
(πsσ2

√
k1r(t) + k2 + πBσB)

2dt

+

∫ T

0
(πsσ1)

2dt

)
<∞;

(iii) The equation (5) has a unique solution on
[0, T ] corresponding to any (π(t), C(t)).

Assume that the set of all the admissible con-
sumption and investment strategies (π(t), C(t)) is de-
noted by Γ = {(π(t), C(t)) : 0 ≤ t ≤ T}. In this
article, our goal is to maximize the following objec-
tive function:

Maximize
(π(t),C(t))∈Γ

E

(
α

∫ T

0
e−βtU1(C(t))dt ,

+(1− α)e−βTU2(X(T ))
)

(6)

where β is the discount factor and the parameter α
determines the relative importance of the intermediate
consumption and the portfolio. When α = 0, expect-
ed utility only depends on the terminal wealth and the
problem is called a dynamic asset allocation problem.
Utility function U1(·) = U2(·) = U(·) is strictly con-
cave and satisfies the Inada conditions: U ′(+∞) = 0
and U ′(0) = +∞.

In this article, we choose power utility and loga-
rithm utility for our analysis. Power utility is given by
U1(x) = U2(x) =

xη

η , η < 1 and η ≠ 0, where η is
the risk aversion factor. Logarithm utility is defined as
U1(x) = U2(x) = lnx.
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3 Optimal Consumption and Portfo-
lio Decisions

In this section, we use the principle of stochas-
tic dynamic programming to obtain the HJB equation
and choose power utility and logarithm utility for our
analysis. By applying variable change techniques we
obtain the closed-form solutions of the optimal con-
sumption and portfolio decisions.

We can define the value function V (t, r, x) as

V (t, r, x) = sup
(π(t),C(t))∈Γ

E

(
α

∫ T

0
e−βtU1(C(t))dt

+(1− α)e−βTU2(X(T )) |X(t) = x, r(t) = r
)
,

with boundary condition

V (T, r, x) = (1− α)× e−βTU2(x).

For any V (t, r, x) ∈ C1,2,2([0, T ]× R× R), we
define a variational operator:

A π,CV (t, r, x) = Vt +
(
rx+ πsλ1σ1+πsλ2σ2σ

2
r

+ πBλ2σBσr − C(t))Vx

+
1

2

(
(πsσ1)

2 + (πsσ2σr + πBσB)
2
)
Vxx

+ (a− br)Vr +
1

2
σ2rVrr

− σr(πsσ2σr + πBσB)Vxr

+ αe−βtU1(C(t)),

where σr =
√
k1r(t) + k2 and Ht, Hx, Hxx, Hr,

Hrr, Hxr denote partial derivatives of first-order and
second-order with respect to the variables t, r, x. We
use also similar notations for higher-order derivatives
of other functions.

According to the principle of stochastic dynamic
programming, we obtain the following HJB equation:

sup
(π(t),C(t))∈Γ

{
A π,CV (t, r, x)

}
= 0. (7)

The following theorem verifies that a solution to the
HJB equation (7) is indeed the optimal solution to the
problem (6).

Theorem 2 If H(t, r, x) ∈ C1,2,2([0, T ] × R × R)
is a solution of the HJB equation (7), i.e. H(t, r, x)
satisfies the following variational equation:

sup
(π(t),C(t))∈Γ

{
A π,CH(t, r, x)

}
= 0,

H(T, r, x) = (1− α)e−βTU2(x),

then we have V (t, r, x) ≤ H(t, r, x) for an arbitrary
admissible policy (π(t), C(t)) ∈ Γ. Moreover, if there
exists a (π∗(t), C∗(t)) ∈ Γ such that

(π∗(t), C∗(t)) ∈ arg sup
{
A π,CH(s, r(s), X(s))

}
,

then when (π(t), C(t)) = (π∗(t), C∗(t)), we have
H(t, r, x) = V (t, r, x), i.e. (π∗(t), C∗(t)) is indeed
the optimal consumption and portfolio decisions of the
problem (6).

Proof. See the Appendix. ⊓⊔
According to Theorem 1 and the first-order max-

imizing conditions, we get

π∗
s
(t) = −λ1

σ1
· Hx

Hxx
, U ′

1(C(t)) =
Hx

αe−βt
, (8)

π∗
B
(t) =

σr(λ1σ2 − λ2σ1)

σ1σB
· Hx

Hxx
+
σr
σB

· Hxr

Hxx
. (9)

Putting (8) and (9) in (7), we obtain a non-linear
second-order partial differential equation (PDE) for
the value function H(t, r, x):

Ht + rxHx + (a− br)Hr +
1

2
σ2rHrr

− 1

2
(λ21 + λ22σ

2
r )
H2

x

Hxx
− 1

2
σ2r
H2

rx

Hxx

+ λ2σ
2
r

HxHxr

Hxx
− C∗(t)Hx

+ αe−βtU(C∗(t)) = 0.

(10)

In the following subsection, we try our best to
solve (10) in order to investigate the optimal consump-
tion and portfolio decisions for power utility and log-
arithm utility respectively.

3.1 Power utility
Under power utility function, the value function

H(t, r, x) is conjectured to have the form

H(t, r, x) = f(t, r)e−βtx
η

η
,

f(T, r) = 1− α.

The partial derivatives for H(t, r, x) are given by

Ht = fte
−βtx

η

η
+ f(−β)e−βtx

η

η
,

Hr = fre
−βtx

η

η
, Hrr = frre

−βtx
η

η
,

Hx = fe−βtxη−1, Hrx = fre
−βtxη−1,

Hxx = fe−βt(η − 1)xη−2.

(11)
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Further, we get

C∗(t) = (
f

α
)

1
η−1x,

Hx

Hxx
=

1

η − 1
x,

Hrx

Hxx
=

1

η − 1
· fr
f
x.

(12)

Plugging (11) and (12) into (10) yields

e−βtx
η

η

(
ft +

(
a− br +

ηλ2σ
2
r

η − 1

)
fr

+

(
ηr − β − ηλ21

2(η − 1)
− ηλ22σ

2
r

2(η − 1)

)
f

+
1

2
σ2rfrr −

η

2η − 2
σ2r
f2r
f

+(1− η)f
η

η−1α
1

1−η

)
= 0.

Eliminating the dependence on the variable x, we can
obtain

ft +

(
ηr − β − ηλ21

2(η − 1)
− ηλ22σ

2
r

2(η − 1)

)
f

+

(
a− br +

ηλ2σ
2
r

η − 1

)
fr +

1

2
σ2rfrr

− η

2η − 2
σ2r
f2r
f

+ (1− η)f
η

η−1α
1

1−η = 0,

f(T, r) = 1− α.

(13)

Assume that

f(t, r) = g(t, r)1−η,

g(T, r) = (1− α)
1

1−η .
(14)

then we have

ft = (1− η)g−ηgt, fr = (1− η)g−ηgr,

frr = −η(1− η)g−η−1g2r + (1− η)g−ηgrr.
(15)

Substituting (14) and (15) back into (13), we derive

(1− η)g−η

(
gt +

(
β

η − 1
− η

η − 1
r

+
η

2(η − 1)2
λ21 +

η

2(η − 1)2
λ22σ

2
r

)
g

+

(
a− br +

η

η − 1
λ2σ

2
r

)
gr

+
1

2
σ2rgrr + α

1
1−η

)
= 0.

Further, we get the equation

gt +

(
β

η − 1
− η

η − 1
r

+
η

2(η − 1)2
λ21 +

η

2(η − 1)2
λ22σ

2
r

)
g

+

(
a− br +

η

η − 1
λ2σ

2
r

)
gr +

1

2
σ2rgrr

+ α
1

1−η = 0, g(T, r) = (1− α)
1

1−η .

(16)

The equation (16) is not easy to solve directly. In-
spired by the work of Liu [14], we can transform (16)
into another equation, which is easy to solve. There-
fore, we need the following Lemma.

Lemma 3 Defining the function g(t, r), which is a so-
lution of the equation (16), as the following form

g(t, r) =α
1

1−η

∫ T

t
ĝ(s, r)ds

+ (1− α)
1

1−η ĝ(t, r),

then we get

ĝt +

(
β

η − 1
− η

η − 1
r

+
η

2(η − 1)2
λ21 +

η

2(η − 1)2
λ22σ

2
r

)
ĝ

+

(
a− br +

η

η − 1
λ2σ

2
r

)
ĝr

+
1

2
σ2r ĝrr = 0, ĝ(T, r) = 1.

(17)

Proof. Defining a differential operator ∇ on any
function g(t, r) by

∇g(t, r) =
(

β

η − 1
− η

η − 1
r

+
η

2(η − 1)2
λ21 +

η

2(η − 1)2
λ22σ

2
r

)
g

+

(
a− br +

η

η − 1
λ2σ

2
r

)
gr +

1

2
σ2rgrr,

then we can rewrite (16) as

∂g(t, r)

∂t
+∇g(t, r) + α

1
1−η = 0,

g(T, r) = (1− α)
1

1−η .

(18)

On the other hand, we get

∂g(t, r)

∂t
= −α

1
1−η ĝ(t, r) + (1− α)

1
1−η · ∂ĝ(t, r)

∂t
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=α
1

1−η

(∫ T

t

∂ĝ(s, r)

∂s
ds− ĝ(T, r)

)
+ (1− α)

1
1−η · ∂ĝ(t, r)

∂t
,

(19)

∇g(t, r) =α
1

1−η

∫ T

t
∇ĝ(s, r)ds

+ (1− α)
1

1−η · ∇ĝ(t, r).
(20)

Putting (19) and (20) in the equation (18), we de-
rive

α
1

1−η

(∫ T

t

(
∂ĝ(s, r)

∂s
+∇ĝ(s, r)

)
ds

−ĝ(T, r) + 1)

+ (1− α)
1

1−η ·
(
∂ĝ(t, r)

∂t
+∇ĝ(t, r)

)
= 0.

So we have

∂ĝ(t, r)

∂t
+∇ĝ(t, r) = 0, ĝ(T, r) = 1.

Namely, (17) holds. It is obvious that we can verify
(17). ⊓⊔

Lemma 4 Assume that the solution of the equation
(17) is of the form ĝ(t, r) = eA(t)+B(t)r, with bound-
ary conditions A(T ) = 0 and B(T ) = 0, then A(t)
and B(t) are given by (26) and (24) respectively.

Proof: Substituting ĝ(t, r) = eA(t)+B(t)r back into
(17) yields

eA(t)+B(t)r

[
A′(t)− β

1− η
+

η

2(η − 1)
λ21 +

1

2
k2B

2(t)

+
η

2(η − 1)2
λ22k2 +

(
a+

η

η − 1
λ22k2

)
B(t)

+ r

(
B′(t) +

1

2
k1B

2(t) +

(
η

η − 1
λ22k1 − b

)
B(t)

+
η

1− η
+

η

2(η − 1)2
λ22k1

)]
= 0.

Eliminating the dependence on r, we get

B′(t) +
1

2
k1B

2(t) +

(
η

η − 1
λ22k1 − b

)
B(t)

+
η

1− η
+

η

2(η − 1)2
λ22k1 = 0,

(21)

A′(t)− β

1− η
+

η

2(η − 1)
λ21

+
1

2
k2B

2(t) +
η

2(η − 1)2
λ22k2

+

(
a+

η

η − 1
λ22k2

)
B(t) = 0.

(22)

For the sake of simplicity, letting

u = −1

2
k1, v = b− η

η − 1
λ22k1,

w = − η

1− η
− η

2(η − 1)2
λ22k1,

then the equation (21) can be rewritten as

B′(t) = uB2(t) + vB(t) + w, B(T ) = 0. (23)

Letting v2−4uw > 0 and integrating (23) on the both
sides from t to T , we get∫ T

t

(
1

B(t)−m1
− 1

B(t)−m2

)
dB(t)

= u(m1 −m2) (T − t) ,

where m1 and m2 are the two different roots of the
following equation

um2 + vm+ w = 0,

namely,

m1 = −b(1− η) + ηλ22k1
(η − 1)k1

+

√
(b(1− η) + ηλ22k1)

2 + k1(2η2 − 2η − ηλ22k1)

(η − 1)k1
,

m2 = −b(1− η) + ηλ22k1
(η − 1)k1

−
√

(b(1− η) + ηλ22k1)
2 + k1(2η2 − 2η − ηλ22k1)

(η − 1)k1
.

So we have

B(t) =
m1m2(1− eu(m1−m2)(T−t))

m1 −m2eu(m1−m2)(T−t)
. (24)

By calculating (20)× k1 − (19)× k2, we get

k1A
′(t)− k2B

′(t) + (ak1 + bk2)B(t)

− 1

1− η
(βk1 −

1

2
ηk1λ

2
1 + ηk2) = 0. (25)

If k1 ̸= 0, by integrating (25) on the both sides
from t to T , we derive

A(t) =
k2
k1
B(t) +

ak1 + bk2
k1

(m2(T − t)

+
1

u

(
ln(m1 −m2)− ln(m1 −m2e

u(m1−m2)(T−t))
))
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− 1

(1− η)k1

(
βk1 −

1

2
ηk1λ

2
1 + ηk2

)
(T − t). (26)

The proof of Lemma 4 is completed. ⊓⊔
Taking (15) into account, (12) can be rewritten as

Hx

Hxx
=

1

η − 1
x,

Hrx

Hxx
= −gr

g
x,

C∗(t) = g−1α
1

1−η x.

Finally, we can summarize the above conclusions
in the following proposition 5.

Proposition 5 When utility function is U1(x) =
U2(x) = xη

η , η < 1 and η ≠ 0, the optimal con-
sumption and portfolio decisions for the problem (6)
are given by

π∗
s
(t) =

1

1− η
· λ1
σ1
X(t),

C∗(t) =α
1

1−η g−1X(t),

π∗
B
(t) =

1

1− η
· σr(λ2σ1 − λ1σ2)

σ1σB
X(t)

− σr
σB

· gr
g
X(t),

where

g = g(t, r) =α
1

1−η

∫ T

t
eA(s)+B(s)r(s)ds

+ (1− α)
1

1−η eA(t)+B(t)r(t),

gr =
∂g(t, r)

∂r
=α

1
1−η

∫ T

t
B(s)eA(s)+B(s)r(s)ds

+ (1− α)
1

1−ηB(t)eA(t)+B(t)r(t).

Remark 6 (i) The parameters α and β have no im-
pact on π∗s(t), but have impact on π∗B(t) and C∗(t).
(ii) The parameters of affine interest rate, i,e, a,b,k1
and k2, have no impact on π∗s(t), but have impact on
π∗B(t) and C∗(t). (iii) The parameters λ2 and σ2 af-
fect the dynamics of stock price, but have no influence
on π∗s(t). (iv) The volatility parameters σ1,σ2 and σB
have no effect on C∗(t).

In order to compare our results with those in the
existing literatures, we discuss several special cases of
Proposition 5.

Special case 1. In the Proposition 5, assume that η =
0, then we get

A(t) = β(t− T ), B(t) = 0,

ĝ(t, r) = eβ(t−T ).

According to (17), we derive

g = g(t, r) =
α

β
(1− eβ(t−T ))

+ (1− α)eβ(t−T ).

Therefore, the results of Proposition 5 is reduced
to

π∗
s
(t) =

λ1
σ1
X(t),

π∗
B
(t) =

σr(λ2σ1 − λ1σ2)

σ1σB
X(t),

C∗(t) =
α

α
β (1− eβ(t−T )) + (1− α)eβ(t−T )

X(t).

It is all well-known that power utility will be de-
generated to logarithm utility function if η = 0. More-
over, we find that these results are in agreement with
those of the following subsection 3.2.

Special case 2. If interest rate is a constant, i.e. a =
b = 0 and k1 = k2 = 0, then the zero-coupon bond
is degenerated to a risk-free asset. Therefore, the third
asset will not be considered in this article. In addition,
we derive

B(t) =
η

1− η
(T − t),

A(t) =

(
η

2(η − 1)
λ21 −

β

1− η

)
(T − t),

g = g(t) =α
1

1−η

∫ T

t
eA(s)+B(s)r(s)dt

+ (1− α)
1

1−η eA(t)+B(t)r(t).

Letting

γ =
η

2(η − 1)
λ21 −

β

1− η
+

η

1− η
r(t),

then we obtain

g = g(t) =α
1

1−η · 1
γ
(eγ(T−t) − 1)

+ (1− α)
1

1−η eγ(T−t).

As a result, the optimal consumption and portfo-
lio decisions with constant interest rate are given by

π∗
s
(t) =

1

1− η
· λ1
σ1
X(t),

C∗(t) = α
1

1−η g−1(t)X(t).

Special case 3. If α = 0 and β = 0, the objective
function (6) is degenerated to maximize expected u-
tility of terminal wealth and the model in this article

WSEAS TRANSACTIONS on MATHEMATICS Hao Chang

E-ISSN: 2224-2880 102 Volume 15, 2016



is reduced to an asset allocation problem with affine
interest rate. Finally, the optimal investment strategy
is given by

π∗
s
(t) =

1

1− η
· λ1
σ1
X(t),

π∗
B
(t) =

1

1− η
· σr(λ2σ1 − λ1σ2)

σ1σB
X(t)

− σr
σB

·B(t)X(t),

where B(t) is still given by Lemma 4.

3.2 Logarithm utility

Under logarithm utility function, assume that the
solution of (10) is of the form

H(t, r, x) =W (t, r)e−βt lnx+ V (t, r),

W (T, r) = 1− α, V (T, r) = 0.

then the partial derivatives of H(t, r, x) are

Ht =Wte
−βt lnx+W (−β)e−βt lnx+ Vt,

Hx =We−βt 1

x
, Hxx = −We−βt 1

x2
,

Hr =Wre
−βt lnx+ Vr, Hrx =Wre

−βt 1

x
,

Hrr =Wrre
−βt lnx+ Vrr. (27)

Then we have
C∗(t) =

α

W
x,

Hx

Hxx
= −x, Hrx

Hxx
= −Wr

W
x. (28)

Putting (27) in the equation (10), we derive

e−βt lnx

(
Wt− βW + (a− br)Wr +

1

2
σ2rWrr+ α

)
+ Vt + (a− br)Vr +

1

2
σ2rVrr − α

+

(
r +

1

2
(λ21 + λ22σ

2
r )

)
We−βt − λ2σ

2
re

−βtWr

+
1

2
σ2re

−βtW
2
r

W
+ αe−βt(lnα− lnW ) = 0.

(29)

Eliminating the dependence on x, (29) can be split in-
to the following two equations:

Wt − βW + (a− br)Wr +
1

2
σ2rWrr + α = 0,

W (T, r) = 1− α;

(30)

Vt + (a− br)Vr +
1

2
σ2rVrr − α

+

(
r +

1

2
(λ21 + λ22σ

2
r )

)
We−βt

− λ2σ
2
re

−βtWr +
1

2
σ2re

−βtW
2
r

W

+ αe−βt(lnα− lnW ) = 0, V (T, r) = 0.

(31)

Lemma 7 Assume that the solution of (30) is of the
form W (t, r) = D(t) + E(t)r, with boundary condi-
tions given by D(T ) = 1− α and E(T ) = 0, then

D(t) = (1− α)e−β(T−t) − α

β
[e−β(T−t) − 1],

E(t) = 0.

Proof. Introducing W (t, r) = D(t) + E(t)r into
(30), we get

D′(t)− βD(t) + aE(t) + α

+r(E′(t)− (β + b)E(t)) = 0.

Eliminating the dependence on r, we obtain two equa-
tions:

E′(t)− (β + b)E(t) = 0,

E(T ) = 0;

D′(t)− βD(t) + aE(t) + α = 0,

D(T ) = 1− α;

Solving the above two equations, we complete the
proof. ⊓⊔

Lemma 8 Suppose that (31) is of the solution
V (t, r) = F (t) + G(t)r, with boundary conditions
F (T ) = 0 and G(T ) = 0, then F (t) and G(t) are
determined by (36) and (35) respectively.

Proof. Putting V (t, r) = F (t) + G(t)r in the equa-
tion (31), we obtain

F ′(t) + aG(t) +
1

2
(λ21 + k2λ

2
2)D(t)e−βt

− α+ αe−βt(lnα− lnD(t))

+ r

(
G′(t)− bG(t) + (

1

2
k1λ

2
2 + 1)D(t)e−βt

)
= 0.

(32)

Comparing the coefficients on the both sides of (32),
we can decompose (32) into two equations:

G′(t)− bG(t) + (
1

2
k1λ

2
2 + 1)D(t)e−βt = 0,

G(T ) = 0;
(33)
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F ′(t) + aG(t) +
1

2
(λ21 + k2λ

2
2)D(t)e−βt

− α+ αe−βt(lnα− lnD(t)) = 0, F (T ) = 0.

(34)

Solving the equation (33) and (34), we get

G(t) =
1

b
(
1

2
k1λ

2
2+1)(1−α− α

β
)e−βT (1−e−b(T−t))

+
1

β + b
(
1

2
k1λ

2
2 + 1)

α

β
e−βT (eβ(T−t) − e−b(T−t)),

(35)

F (t) =

∫ T

t
aG(t)dt+

∫ T

t

1

2
(λ21 + k2λ

2
2)D(t)e−βtdt

+

∫ T

t
(α lnαe−βt − α)dt−

∫ T

t
αe−βt lnD(t)dt.

(36)
Therefore, Lemma 8 is completed. ⊓⊔

Taking Lemma 7 into account, (28) is reduced to

C∗(t) =
α

D(t)
x,

Hx

Hxx
= −x, Hrx

Hxx
= −Wr

W
x = 0.

Therefore, we can obtain the optimal trading policy of
the problem (6) in the logarithm utility case.

Proposition 9 If utility function is given by U1(x) =
U2(x) = lnx, the optimal investment and consump-
tion strategies for the problem (6) are

π∗
s
(t) =

λ1
σ1
X(t),

π∗B(t) =
σr(λ2σ1 − λ1σ2)

σ1σB
X(t),

C∗(t) =
α

(1− α)e−β(T−t) − α
β [e

−β(T−t) − 1]
X(t).

Remark 10 (i) The parameters α and β have no im-
pact on π∗s(t) and π∗B(t), but have impact on C∗(t).
(ii) The parameters of affine interest rate model, i,e,
a,b,k1 and k2, have no impact on π∗s(t), π

∗
B(t) and

C∗(t). It means that the optimal investment and con-
sumption strategies under affine interest rate model a-
grees with those under constant interest rate model
when utility function is logarithmic. (iii) The parame-
ters λ2 and σ2 affect the dynamics of stock price, but
have no influence on π∗s(t) andC∗(t). (iv) The volatil-
ity parameters σ1,σ2 and σB have no effect on C∗(t).

4 Numerical Analysis

In this section, we take power utility for example,
and provide a numerical example to illustrate the ef-
fect of market parameters on the optimal investmen-
t and consumption strategy. Throughout numerical
analysis, unless otherwise stated, the basic market pa-
rameters are given by a = 0.018712, b = 0.2339,
k1 = 0.00729316, k2 = 0, r(0) = 0.05, σ1 = 0.2,
λ1 = 0.2, σ2 = 0.02, λ2 = 1.

The set of parameters representing the financial
market is consistent with the numerical analysis p-
resented by Deelstra et al. [26] and Gao [27]. For
the sake of calculating convenience, we assume that
α = 0.6, β = 0.05, η = −1, t = 0, T = 1, x0 = 100.
According to the results of Proposition 1, we can draw
some graphs in the following Figure 1 and Figure 8.
Notice that in the Figure 1–Figure 4, the dashed line
represents the amount π∗s(t) invested in the stock and
the orange line represents the amount π∗B(t) invested
in the zero-coupon bond, while the amount π∗0(t) in-
vested in the cash account is denoted by the thick line.

4.1 The effect on the optimal investment s-
trategy
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Figure 1: The impact of η on π∗s(t) and π∗B(t).

We can summarize some conclusions from the
Figure 1-Figure 4.

(a1) π∗s(t) and π∗B(t) increase with respect to the
parameter η respectively, while π∗0(t) just decreases
with respect to η. This coincides with the econom-
ic implication of the parameter η. In the power utili-
ty theory, risk aversion coefficient measuring the risk
preference of an investor is the value of 1− η. There-
fore, the bigger the value of η, the smaller the risk
aversion coefficient 1−η. It will make the investor in-
vest more money in the stock and zero-coupon bond,
while invest less money in the cash account.

(a2) π∗s(t) is almost fixed and π∗B(t) is increas-
ing in the parameter b, while π∗0(t) is decreasing in b.
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Figure 2: The impact of b on π∗s(t) and π∗B(t).

0.0 0.2 0.4 0.6 0.8 1.0

-50

0

50

100

k1

op
tim

al
in

ve
st

m
en

ts
tr

at
eg

y

cash

bond

stock

Figure 3: The impact of k1 on π∗s(t) and π∗B(t).
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Figure 4: The impact of σ1 on π∗s(t) and π∗B(t).
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Figure 5: The impact of η on C∗(t).
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Figure 6: The impact of b on C∗(t).

From the economic implication of b, when the value
of b becomes larger, the expected value of interest rate
r(t) will become smaller. It leads to that the volatility
risk of interest rate will become smaller. Therefore,
the larger the value of b, the more the amount invest-
ed in the zero-coupon bond, while the less the amount
invested in the cash account.

(a3) π∗B(t) decreases with respect to the parame-
ter k1, while π∗0(t) increases in k1 and π∗s(t) is almost
fixed. Meantime, π∗s(t) is not affected by the parame-
ter k1. This remark is intuitive, because the parameter
k1 measures the volatility of interest rate. The larger
the value of k1, the more the risk generated by interest
rate, and hence the less an investor wishes to invest in
the zero-coupon. This is the reason that the investor
invests more money in the cash account.

(a4) π∗s(t)decreases as the value of σ1 becomes
bigger, while π∗0(t) increases. In addition, the param-
eter σ1 has no influence on π∗B(t). Form the econom-
ic implication of σ1, the parameter σ1 represents the
volatility risk of the stock, the bigger the value of σ1,
the more the volatility risk of the stock, and it leads
to that the more aggressive the investor is. Hence, the
investor wishes to decrease the amount invested in the
stock, while invest more money in the cash account.
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Figure 7: The impact of k1 on C∗(t).
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Figure 8: The impact of a on C∗(t).

4.2 The effect on the optimal consumption s-
trategy

We can illustrate how market parameter has an ef-
fect on the optimal consumption strategy C∗(t) from
the Figure 5–Figure 8.

(b1) C∗(t) increases with respect to the param-
eter η. As matter of fact, when the value of η be-
comes large, the amount invested in the stock and
zero-coupon bond is increasing, which results in the
wealth of the investor will become large. Therefore,
the investor has more money to consume.

(b2) C∗(t)is decreasing in the parameter b. It can
be seen from (a2) that when the value of b is increas-
ing the amount invested in the zero-coupon bond is in-
creasing, which implies that the wealth of the investor
is increasing. However, contrary to the intuitive, the
amount that an investor should consume is decreasing
when the value of b becomes bigger. We should keep
this point in mind in the practice of investment.

(b3) C∗(t)will increase as the parameter k1 be-
comes larger. This implies that the bigger the value
of k1, the more the risk of interest rate, and meantime
the more the investor can consume.

(b4) C∗(t) decreases with respect to the param-
eter a. It shows that when the value of a becomes
bigger, the expected value of interest rate will also be-
come much larger, and the investor should consume
less money.

5 Conclusions
In this article, we consider consumption behavior

of the individuals on the basis of the works of Deelstra
et al. [26] and Gao [27], Chang et al. [28] and study
the optimal consumption and portfolio decisions with
stochastic affine interest rate model. The financial
market is composed of three assets: one cash accoun-
t, one stock and one zero-coupon bond. The explicit

expressions of the optimal consumption and portfolio
decisions are successfully obtained in the power util-
ity and logarithm utility cases. Finally, we provide
a numerical example to analyze the effect of market
parameters on the optimal consumption and portfolio
decisions and display some economic implications.

In future research on the consumption and invest-
ment problems, it would be very interesting to extend
our financial market to the cases of the more sophis-
ticated environments, such as the investment and con-
sumption problems with interest rate risk and infla-
tion risk. On the other hand, we also consider an
investment and consumption problem in the regime-
switching and affine interest rate framework. Never-
theless, we leave these points to future research.

Appendix:

The Proof of Theorem 1. Letting Q = [0,∞)×
[0,∞), we take a sequence of bounded open sets Qi

with Qi ⊂ Qi+1 ⊂ Q, i = 1, 2, · · · , and Q =
∞∪
i=1

Qi.

For (r, x) ∈ Q1, denote the exit time of (r(t), X(t))
from Qi by τi. when i→ ∞, we have τi ∧ T → T .

(i) Consider an arbitrary admissible policy
(π(t), C(t)).

Applying Itô′s formula to H(t, r, x) on [t, T ] ,
we obtain

H(T, r(T ), X(T )) = H(t, r, x)

+

∫ T

t

A π,CH(s, r(s), X(s))ds

+

∫ T

t

πsσ1Hx(s, r(s), X(s))dWs(s)

+

∫ T

t

(
πsσ2

√
k1r(t) + k2 + πBσB

)
×Hx(s, r(s), X(s))dWr(s)

−
∫ T

t

√
k1r(t) + k2Hr(s, r(s), X(s))dWr(s).

Considering sup
(π(t),C(t))∈Γ

{
A π,CH(t, r, x)

}
= 0,

which implies the variational inequality
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A π,CH(t, r, x) ≤ 0, we have

H(T, r(T ), X(T )) ≤ H(t, r, x)

+

∫ T

t

πsσ1Hx(s, r(s), X(s))dWs(s)

+

∫ T

t

(
πsσ2

√
k1r(t) + k2 + πBσB

)
×Hx(s, r(s), X(s))dWr(s)

−
∫ T

t

√
k1r(t) + k2Hr(s, r(s), X(s))dWr(s).

For the last three terms on the right hand of
the above inequality are square-integrable martingales
with zero expectation. Hence, we have

E (H(T, r(T ), X(T )) |X(t) = x, r(t) = r )

≤ H(t, r, x).

Further, taking the supermum, we get

sup
(π(t),C(t))∈Γ

E (H(T, r(T ), X(T )) |X(t) = x, r(t) = r )

≤ H(t, r, x).

and it results in

V (t, r, x) ≤ H(t, r, x).

(ii) E (H(τi ∧ T, r(τi ∧ T ), X(τi ∧ T ))) < ∞
for a specific strategy (π∗(t), C∗(t)).

Applying Itô′s formula on [0, τi ∧T ] once again,
we have

H((τi ∧ T, r(τi ∧ T ), X(τi ∧ T )) = H(0, r0, x0)

+

∫ τi∧T

0

A π∗,C∗
H(s, r(s), X(s))ds

+

∫ τi∧T

0

πsσ1Hx(s, r(s), X(s))dWs(s)

+

∫ τi∧T

0

(
πsσ2

√
k1r(t) + k2 + πBσB

)
×Hx(s, r(s), X(s))dWr(s)

−
∫ τi∧T

0

√
k1r(t) + k2Hr(s, r(s), X(s))dWr(s).

For a specific strategy (π∗(t), C∗(t)) satisfies (10), i.e.
A π∗,C∗

H(s, r(s), X(s)) = 0, and the last three terms
are also square-integrable martingales. Hence, taking

the expectation on both sides on the above equation,
we obtain

E (H((τi ∧ T, r(τi ∧ T ), X(τi ∧ T )))
= H(0, r0, x0) <∞.

(iii) V (t, r, x) = H(t, r, x) for a specific strategy
(π∗(t), C∗(t)).

Applying Itô′s formula on [t, τi ∧ T ] once again,
similarly, we have

H((τi ∧ T, r(τi ∧ T ), X(τi ∧ T )) = H(t, r, x)

+

∫ τi∧T

t

A π∗,C∗
H(s, r(s), X(s))ds

+

∫ τi∧T

t

πsσ1Hx(s, r(s), X(s))dWs(s)

+

∫ τi∧T

t

(
πsσ2

√
k1r(t) + k2 + πBσB

)
×Hx(s, r(s), X(s))dWr(s)

−
∫ τi∧T

t

√
k1r(t) + k2Hr(s, r(s), X(s))dWr(s).

Taking the expectation yields

H(t, r, x) = E(H((τi ∧ T, r(τi ∧ T ),

X(τi ∧ T )) |r(t) = t,X(t) = x).

Taking the limitation, we get

H(t, r, x) = lim
i→∞

E(H(τi ∧ T, r(τi ∧ T ),

X(τi ∧ T )) |X(t) = x, r(t) = r ).

As a result, we derive

V (t, r, x) = sup
(π(t),C(t))∈Γ

E(α

∫ T

0
e−βtU1(C(t))dt

+ (1− α)e−βTU2(X(T )) |X(t) = x, r(t) = r )

= lim
i→∞

E(H(τi ∧ T, r(τi ∧ T ),

X(τi ∧ T )) |X(t) = x, r(t) = r )

= H(t, r, x).

Therefore, it implies that (π∗(t), C∗(t)) is indeed
the optimal investment-consumption strategy for the
problem (6). ⊓⊔
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